日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做MATH1033、代寫c/c++,Java程序語言

時間:2024-05-11  來源:  作者: 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2023-2024
MATH1033 - STATISTICS
Your neat, clearly-legible solutions should be submitted electronically via the MATH1033 Moodle page by
18:00 on Wednesday 8th May 2024. Since this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct). Submissions made more than one week
after the deadline date will receive a mark of zero. Please try to make your submission by the deadline.
General points about the coursework
1. Please use R Markdown to produce your report.
2. An R Markdown template file to get you started is available to download from Moodle. Do make use of
this, besides reading carefully the Hints and Tips section below.
3. Please submit your report a self-contained html file (i.e. as produced by R Markdown) or pdf.
4. If you have any queries about the coursework, please ask me by email (of course, please limit this to
requests for clarification; don’t ask for any of the solution nor post any of your own).
Your task
The data file scottishData.csv contains a sample of the ”Indicator” data that were used to compute the 2020
Scottish Index of Multiple Deprivation (SIMD), a tool used by government bodies to support policy-making. If
you are interested, you can see the SIMD and find out more about it here: https://simd.scot
Once you have downloaded the csv file, and once you’ve set the RStudio working directory to wherever you
put the file, you can load the data with dat <- read.csv(”scottishData.csv”) The file contains data for a sample
of 400 ”data zones” within Scotland. Data zones are small geographical areas in Scotland, of which there
are 6,976 in total, with each typically containing a population of between 500 and 1000 people. Of the 400
observations within the data file, 100 are from the Glasgow City, 100 are from City of Edinburgh, and 200
are from elsewhere in Scotland. Glasgow and Edinburgh are the two largest cities in Scotland by population.
Table 1 shows a description of the different variables within the data set.
Your report should have the following section headings: Summary, Introduction, Methods, Results, Conclusions.
For detailed guidance, read carefully section page 4 of the notes, and the ”How will the report be marked?”
section below.
The Results section of your report should include subsections per points 1-3 as follows. The bullet points
indicate what should be included within these subsections, along with suitable brief commentary.
MATH1033 Turn Over
2 MATH1010
1. A comparison of employment rate between Glasgow and Edinburgh.
• A single plot with side-by-side boxplots for the Employment_rate variable for each of
Glasgow and Edinburgh.
• A histogram of the Employment_rate variable with accompanying normal QQ plot, for
each of Glasgow and Edinburgh.
• Sample means and variances of the Employment_rate variable for the data zones in
each of Glasgow and Edinburgh.
• Test of whether there is a difference in variability of Employment_rate scores between
Glasgow and Edinburgh.
• Test of whether there is a difference in means of Employment_rate scores between
Glasgow and Edinburgh.
2. Investigation into how Employment_rate and other variables are associated.
• A matrix of pairwise scatterplots for the following variables: Employment_rate,
Attainment, Attendance, ALCOHOL, and Broadband. Also present pairwise correlation
coefficients between these variables.
• A regression of Employment_rate on Attendance, including a scatterplot showing a line
of best fit.
3. A further investigation into a respect of your choosing.
• It’s up to you what you choose here. Possible things you could consider are: considering
an analysis similar to 1 above, but involving the data on data zones outside of Glasgow
and Edinburgh; considering whether what you find in investigations in 2 above are
similar if you consider whether the data zones are from Glasgow, Edinburgh or elsewhere;
investigating the other variables in the data set besides these in 1 and 2.
• Note that some variables will be very strongly correlated, but with fairly obvious/boring
explanation: for example “rate” variables (see Table 1) are just “count” variables
divided by population size, and data zones are designed to have similar population
sizes.
• Think freely and creatively about what is interesting to investigate, especially how you
could make good use of the methods that you are learning in the module.
Please include as an appendix the R code to produce the results in your report, but don’t include
R code or unformatted text/numerical output in the main part of the report itself.
Hints and tips:
1. Use the template .Rmd file provided on Moodle as your starting point.
2. Read carefully “How will the report be marked?” below. Then re-read it again once again
just before you submit to make sure you have everything in place.
3. You may find the subset command useful. Some examples:
• glasgow <- subset(dat, Council_area == "Glasgow City") defines a new variable containing
data only for Glasgow.
• subset(dat, (Council_area != "City of Edinburgh" & Council_area != "Glasgow City"))
finds the data zones that are not in either Edinburgh or Glasgow.
4. The command names(dat) will tell you the names of the variables (columns) in dat.
5. dat(,c(16,17,18)) will pick out just the 16th, 17th, 18th column (for example).
MATH1010
[ ]
m
( ]
⑧m
3 MATH1010
6. The pairs() function produces a matrix of pairwise scatterplots. cor() computes pairwise
correlation coefficients.
7. Do make sure that figures have clear titles, axis labels, etc
MATH1010 Turn Over
.
4 MATH1010
How will the report be marked?
The marking criteria and approximate mark allocation are as follows:
Summary [4 marks] - have you explained (in non-technical language) (a) the aim of the analysis;
(b) (very briefly) the methods you have used; and (c) the key findings?
Introduction [5] - have you (a) explained the context, talked in a bit more detail about the aim;
(b) given some relevant background information; (c) described the available data; (d) explained
why the study is useful/important?
Methods [3] - have you described the statistical techniques you have used (in at least enough
detail that a fellow statistician can understand what you have done)?
Results [14, of which 7 are for the investigation of your choosing mentioned in point 3 above] -
have you presented suitable graphical/numerical summaries, tests and results, and interspersed
these with text giving explanation?
Conclusions [4] - have you (a) recapped your key findings, (b) discussed any limitations, and
(c) suggested possible further extensions of the work?
Presentation [10] - overall, does the report flow nicely, is the writing clear, and is the presentation
tidy (figures/tables well labelled and captioned)? Has Markdown been used well?
MATH1010
5 MATH1010
Table 1: A description of the different variables. “Standardised ratio” is such that a value of 100
is the Scotland average for a population with the same age and sex profile.
MATH1010 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



















 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:COMP2017代寫、代做Python/Java程序
  • 下一篇:CMT219代寫、代做Java程序語言
  • 代做CSCI 2525、c/c++,Java程序語言代寫
  • COMP 315代寫、Java程序語言代做
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        欧美视频一二三区| 欧美色区777第一页| 天堂一区二区在线| 国产精品久久久久久久久免费丝袜 | 欧美日韩国产影片| 色哟哟日韩精品| 色哟哟日韩精品| 一本大道久久a久久综合婷婷| 国产成人鲁色资源国产91色综| 免费成人在线网站| 美女视频一区二区| 精品一区二区三区久久| 久久成人免费网站| 国产露脸91国语对白| 国产乱码精品一区二区三区五月婷| 美女爽到高潮91| 国内外成人在线| 国产九色精品成人porny| 韩国一区二区视频| 国产精品一级片| 99久精品国产| 欧美在线观看一区二区| 欧美日韩小视频| 精品福利一二区| 国产农村妇女毛片精品久久麻豆 | 久久国产麻豆精品| 国产精品正在播放| 99re热视频精品| 欧美性做爰猛烈叫床潮| 日韩午夜中文字幕| 国产精品天干天干在观线| 136国产福利精品导航| 亚洲一区二区三区视频在线播放| 日韩黄色在线观看| 麻豆免费精品视频| 国产黄色91视频| 欧美性大战久久| 日韩精品一区国产麻豆| 亚洲天堂中文字幕| 久久精品国产网站| 色丁香久综合在线久综合在线观看| 欧美日韩高清一区二区| 精品国产sm最大网站| 国产精品白丝av| 成人国产视频在线观看| 色婷婷亚洲一区二区三区| 777午夜精品视频在线播放| 久久久久久免费毛片精品| 亚洲天堂精品在线观看| 九色|91porny| 欧美日韩一区不卡| 欧美国产乱子伦| 免费成人性网站| 在线亚洲高清视频| 欧美激情在线看| 麻豆91在线看| 欧美日韩中文一区| 国产精品污网站| 精品一区二区三区香蕉蜜桃| 在线观看av一区二区| 国产亚洲综合色| 九九**精品视频免费播放| 色综合网色综合| 久久久久久久久久久黄色 | 99久久99久久精品国产片果冻| 2欧美一区二区三区在线观看视频| 一区二区三区日韩欧美精品 | 99久久精品国产一区二区三区| 日韩视频一区二区在线观看| 香蕉久久夜色精品国产使用方法| 成人黄色大片在线观看| 国产午夜精品久久久久久免费视 | 99re在线视频这里只有精品| 国产日韩精品一区二区三区| 久久国产精品第一页| 欧美日韩国产经典色站一区二区三区| 成人欧美一区二区三区视频网页 | 日本不卡免费在线视频| 欧美日韩高清一区| 日韩黄色小视频| 欧美一区二区三区色| 婷婷综合五月天| 在线播放日韩导航| 日本特黄久久久高潮| 欧美年轻男男videosbes| 亚洲一区二区三区视频在线 | 亚洲欧美日韩在线播放| 99久久精品免费观看| 中文字幕一区二区不卡| 色吧成人激情小说| 亚洲国产精品一区二区尤物区| 在线视频国内一区二区| 日韩精品亚洲专区| 91精品国产高清一区二区三区蜜臀| 热久久一区二区| 中文字幕乱码久久午夜不卡| 成人黄色大片在线观看| 亚洲欧美另类小说| 欧美日韩国产三级| 国产在线精品一区二区三区不卡| 久久亚洲春色中文字幕久久久| 粉嫩蜜臀av国产精品网站| 亚洲精品成人悠悠色影视| 91精品国产手机| 成人一区二区视频| 亚洲图片欧美综合| 久久久不卡影院| 色网站国产精品| 精品一区二区三区视频| 专区另类欧美日韩| 日韩欧美中文字幕公布| 97久久超碰国产精品| 午夜激情一区二区| 国产清纯美女被跳蛋高潮一区二区久久w | 一区二区三区成人| 精品电影一区二区三区 | 欧美天堂一区二区三区| 美国欧美日韩国产在线播放| 中文字幕久久午夜不卡| 欧美喷水一区二区| 91丝袜高跟美女视频| 韩国三级在线一区| 亚洲国产美国国产综合一区二区 | 色综合久久久久久久久久久| 精品一二三四在线| 亚洲一区二区中文在线| 久久久不卡网国产精品一区| 欧美三日本三级三级在线播放| 韩国女主播一区二区三区| 亚洲午夜影视影院在线观看| 久久精品一区二区三区av| 6080yy午夜一二三区久久| 成人av在线看| 国产盗摄一区二区三区| 日本三级亚洲精品| 亚洲欧美另类图片小说| 久久精品男人的天堂| 日韩欧美高清dvd碟片| 欧美综合天天夜夜久久| 国产成人在线免费观看| 老司机午夜精品| 偷拍一区二区三区| 亚洲五月六月丁香激情| 亚洲精品国产成人久久av盗摄| 中文无字幕一区二区三区 | 夜夜爽夜夜爽精品视频| 亚洲精品伦理在线| 国产精品免费免费| 国产亚洲1区2区3区| 精品成人一区二区三区四区| 日韩欧美国产麻豆| 欧美一区二区三区视频免费 | 蜜臂av日日欢夜夜爽一区| 亚洲一区精品在线| 亚洲午夜久久久久久久久电影网| 一区二区三区四区蜜桃| 亚洲激情五月婷婷| 亚洲午夜羞羞片| 日韩国产一二三区| 精油按摩中文字幕久久| 韩国精品主播一区二区在线观看| 久久成人久久鬼色| 国产一区二区三区精品欧美日韩一区二区三区| 亚洲444eee在线观看| 日本不卡不码高清免费观看| 热久久免费视频| 国产精品99久久久久久宅男| 国产成人免费9x9x人网站视频| www.日本不卡| 91高清在线观看| 欧美一区二区三区男人的天堂| 欧美一区二区高清| 精品久久久久久亚洲综合网 | 色噜噜偷拍精品综合在线| 欧美性xxxxxx少妇| 91精品国产91久久久久久最新毛片| 日韩一区二区三免费高清| 欧美刺激午夜性久久久久久久| 久久亚洲欧美国产精品乐播| 国产精品美女视频| 性做久久久久久免费观看| 卡一卡二国产精品 | 最近中文字幕一区二区三区| 图片区小说区国产精品视频| 国内外精品视频| 在线观看91精品国产入口| 日韩视频中午一区| 国产精品的网站| 久久se这里有精品| 日本电影亚洲天堂一区| 26uuu欧美| 亚洲最色的网站| 国产伦精品一区二区三区视频青涩| jlzzjlzz亚洲日本少妇| 在线不卡中文字幕播放| 中文字幕日韩av资源站| 久久国产精品免费| 欧美日韩国产免费一区二区| 中文字幕不卡一区| 蜜桃av一区二区三区电影|