日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        www.97视频| 狠狠躁狠狠躁视频专区| 亚洲一区二区图片| 亚洲中文一区二区三区| 被黑人猛躁10次高潮视频| 国产91久久久| 精品无码人妻少妇久久久久久| 国产污污视频在线观看| 久草手机视频在线观看| 日产精品久久久久| 性xxxxbbbb| 91日韩中文字幕| 国产一区二区麻豆| 日本网站免费观看| 亚洲黄色av网址| 国产91免费看| 男操女视频网站| 亚洲av鲁丝一区二区三区| 亚洲一级生活片| 好吊色视频一区二区| 免费一级特黄特色大片| 亚洲AV无码一区二区三区性| 亚洲精品色午夜无码专区日韩| 成年人三级黄色片| 免费黄色av片| 一色道久久88加勒比一| 97人妻精品一区二区三区免费| 国产又黄又粗的视频| 日韩一区二区三区四区视频| 亚洲精品97久久中文字幕无码| 国产高潮失禁喷水爽到抽搐| 全部毛片永久免费看| 最新国产黄色网址| 韩国中文字幕hd久久精品| 肉丝美足丝袜一区二区三区四| 亚洲三区在线播放| 精品黑人一区二区三区在线观看 | 国产精品视频123| 欧美国产在线看| 亚洲精品午夜久久久久久久| 国产免费一区二区三区最新6| 日本中文字幕在线不卡| 99自拍视频在线| 日韩美女一级片| www.日本一区| 色窝窝无码一区二区三区| 99热这里只有精品在线| 欧美一级xxxx| www国产视频| 色av性av丰满av| 国产精品欧美综合亚洲| 少妇视频在线播放| 国产精品污视频| 在线观看国产精品视频| 九九热精品在线播放| 亚洲黄色免费观看| 日本亚洲欧美在线| 国产极品久久久| 中文字幕一区二区三区人妻| 久久免费少妇高潮99精品 | 一级片在线免费观看视频| 九九热免费在线观看| 亚洲午夜久久久久久久久红桃| 久久免费视频99| 国产精品jizz| 亚洲精品国产精品国自| 欧美日韩在线视频免费| 国产老熟女伦老熟妇露脸| 中文字幕在线导航| 日韩精品在线免费看| 国产特级黄色片| 亚洲永久精品一区| 天天干天天色天天| 久热精品在线观看| 国产精品熟妇一区二区三区四区| 中文字幕求饶的少妇| 欧洲美一区二区三区亚洲| 国产精品美女久久久久av爽| 中文字幕18页| 天天操天天操天天操天天操天天操 | 精品一区二区三孕妇视频| 91香蕉视频在线播放| 亚洲av无码一区二区三区人| 免费看一级黄色| 国产亚洲小视频| 岛国av免费观看| 亚洲一区二区在线免费| 一区二区在线免费观看视频| 色噜噜日韩精品欧美一区二区| 国内偷拍精品视频| 成人午夜福利一区二区| 亚洲婷婷综合网| 伊人亚洲综合网| 五月婷婷六月丁香| 少妇久久久久久被弄高潮| 欧美成人一区二区视频| 久久精品亚洲天堂| 国产农村妇女毛片精品| av中文字幕播放| 91片黄在线观看喷潮| 亚洲天堂视频一区| 中文字幕有码av| 亚洲成年人在线观看| 天天干天天色综合| 午夜性福利视频| 熟女少妇内射日韩亚洲| 欧美精品成人久久| 欧美另类一区二区| 人妻精品一区一区三区蜜桃91| 卡通动漫亚洲综合| 久久久精品视频免费| 久久精品五月天| 蜜臀视频一区二区三区| 久久久久久久久久久网| 麻豆成人在线视频| 人妻91麻豆一区二区三区| 日本黄大片一区二区三区| 男人天堂av电影| 日韩特黄一级片| 天天综合天天色| 在线免费观看a级片| 中文字幕在线视频精品| 亚洲一级在线播放| 二区视频在线观看| 国产又黄又粗又爽| 久久久久香蕉视频| 日本免费在线观看视频| 天堂8在线视频| 中文字幕日韩综合| 999久久久精品视频| 国产精品一区二区人妻喷水| 黄色av小说在线观看| 老鸭窝一区二区| 五月激情婷婷在线| 最新在线中文字幕| 国产成人免费观看网站| 久久精品国产亚洲av高清色欲| 欧美大片久久久| 中文字幕 亚洲一区| 99精品视频免费看| 韩国无码一区二区三区精品| 人妻91麻豆一区二区三区| 中国一级片在线观看| 99精品999| 精品国产成人亚洲午夜福利| 日本黄色小说视频| 中文字幕在线观看视频网站| 成人乱码一区二区三区| 九九热国产精品视频| 少妇精品一区二区| 91高清国产视频| 精品影片一区二区入口| 日韩特黄一级片| av在线亚洲天堂| 欧美亚洲精品天堂| 中文字幕一二区| 黄色av一区二区| 一炮成瘾1v1高h| 国产精品国产三级国产专业不| 女人18毛片水真多18精品| 在线免费av网| 国产午夜在线播放| 性xxxx视频播放免费| 成人黄色一级大片| 欧美老熟妇一区二区三区| 最近中文字幕av| 精品无码免费视频| 亚洲精品视频三区| 久草成人在线视频| 中文字幕免费高清视频| 韩国中文字幕hd久久精品| 亚洲不卡在线播放| 精品人妻无码一区二区性色| 亚洲h视频在线观看| 国产美女高潮视频| 一区二区三区 欧美| 国产在线一级片| 亚洲日本视频在线观看| 蜜桃在线一区二区| 91pony九色| 神宫寺奈绪一区二区三区| 国产精品嫩草影院桃色| 五月婷婷综合在线观看| 极品颜值美女露脸啪啪| 亚洲精品国产精品国自产网站按摩 | 久久午夜无码鲁丝片| 中文人妻av久久人妻18| 久草中文在线视频| 一级黄色免费毛片| 婷婷丁香激情网| 精品人妻一区二区三区蜜桃视频| 亚洲精品久久久久久| 欧美大片xxxx| 国产在线观看黄色| 2019男人天堂| 亚洲成人日韩在线| 男人天堂综合网| 国产伦一区二区| 亚洲永久精品视频| 一区二区三区在线观看av|