日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

AI6126代做、Python設計程序代寫

時間:2024-04-12  來源:  作者: 我要糾錯



2023-S2 AI6126 Project 2
Blind Face Super-Resolution
Project 2 Specification (Version 1.0. Last update on 22 March 2024)
Important Dates
Issued: 22 March 2024
Release of test set: 19 April 2023 12:00 AM SGT
Due: 26 April 2023 11:59 PM SGT
Group Policy
This is an individual project
Late Submission Policy
Late submissions will be penalized (each day at 5% up to 3 days)
Challenge Description
Figure 1. Illustration of blind face restoration
The goal of this mini-challenge is to generate high-quality (HQ) face images from the
corrupted low-quality (LQ) ones (see Figure 1) [1]. The data for this task comes from
the FFHQ. For this challenge, we provide a mini dataset, which consists of 5000 HQ
images for training and 400 LQ-HQ image pairs for validation. Note that we do not
provide the LQ images in the training set. During the training, you need to generate
the corresponding LQ images on the fly by corrupting HQ images using the random
second-order degradation pipeline [1] (see Figure 2). This pipeline contains 4 types
of degradations: Gaussian blur, Downsampling, Noise, and Compression. We will
give the code of each degradation function as well as an example of the degradation
config for your reference.
Figure 2. Illustration of second-order degradation pipeline during training
During validation and testing, algorithms will generate an HQ image for each LQ face
image. The quality of the output will be evaluated based on the PSNR metric
between the output and HQ images (HQ images of the test set will not be released).
Assessment Criteria
In this challenge, we will evaluate your results quantitatively for scoring.
Quantitative evaluation:
We will evaluate and rank the performance of your network model on our given 400
synthetic testing LQ face images based on the PSNR.
The higher the rank of your solution, the higher the score you will receive. In general,
scores will be awarded based on the Table below.
Percentile
in ranking
≤ 5% ≤ 15% ≤ 30% ≤ 50% ≤ 75% ≤ 100% *
Scores 20 18 16 14 12 10 0
Notes:
● We will award bonus marks (up to 2 marks) if the solution is interesting or
novel.
● To obtain more natural HQ face images, we also encourage students to
attempt to use a discriminator loss with a GAN during the training. Note that
discriminator loss will lower the PSNR score but make the results look more
natural. Thus, you need to carefully adjust the GAN weight to find a tradeoff
between PSNR and perceptual quality. You may earn bonus marks (up to 2
marks) if you achieve outstanding results on the 6 real-world LQ images,
consisting of two slightly blurry, two moderately blurry, and two extremely
blurry test images. (The real-world test images will be released with the 400
test set) [optional]
● Marks will be deducted if the submitted files are not complete, e.g., important
parts of your core codes are missing or you do not submit a short report.
● TAs will answer questions about project specifications or ambiguities. For
questions related to code installation, implementation, and program bugs, TAs
will only provide simple hints and pointers for you.
Requirements
● Download the dataset, baseline configuration file, and evaluation script: here
● Train your network using our provided training set.
● Tune the hyper-parameters using our provided validation set.
● Your model should contain fewer than 2,276,356 trainable parameters, which
is 150% of the trainable parameters in SRResNet [4] (your baseline network).
You can use
● sum(p.numel() for p in model.parameters())
to compute the number of parameters in your network. The number of
parameters is only applicable to the generator if you use a GAN.
● The test set will be available one week before the deadline (this is a common
practice of major computer vision challenges).
● No external data and pre-trained models are allowed in this mini
challenge. You are only allowed to train your models from scratch using the
5000 image pairs in our given training set.
Submission Guidelines
Submitting Results on CodaLab
We will host the challenge on CodaLab. You need to submit your results to CodaLab.
Please follow the following guidelines to ensure your results are successfully
recorded.
● The CodaLab competition link:
https://codalab.lisn.upsaclay.fr/competitions/18233?secret_key
=6b842a59-9e76-47b1-8f56-283c5cb4c82b
● Register a CodaLab account with your NTU email.
● [Important] After your registration, please fill in the username in the Google
Form: https://forms.gle/ut764if5zoaT753H7
● Submit output face images from your model on the 400 test images as a zip
file. Put the results in a subfolder and use the same file name as the original
test images. (e.g., if the input image is named as 00001.png, your result
should also be named as 00001.png)
● You can submit your results multiple times but no more than 10 times per day.
You should report your best score (based on the test set) in the final report.
● Please refer to Appendix A for the hands-on instructions for the submission
procedures on CodaLab if needed.
Submitting Report on NTULearn
Submit the following files (all in a single zip file named with your matric number, e.g.,
A12345678B.zip) to NTULearn before the deadline:
● A short report in pdf format of not more than five A4 pages (single-column,
single-line spacing, Arial 12 font, the page limit excludes the cover page and
references) to describe your final solution. The report must include the
following information:
○ the model you use
○ the loss functions
○ training curves (i.e., loss)
○ predicted HQ images on 6 real-world LQ images (if you attempted the
adversarial loss during training)
○ PSNR of your model on the validation set
○ the number of parameters of your model
○ Specs of your training machine, e.g., number of GPUs, GPU model
You may also include other information, e.g., any data processing or
operations that you have used to obtain your results in the report.
● The best results (i.e., the predicted HQ images) from your model on the 400
test images. And the screenshot on Codalab of the score achieved.
● All necessary codes, training log files, and model checkpoint (weights) of your
submitted model. We will use the results to check plagiarism.
● A Readme.txt containing the following info:
○ Your matriculation number and your CodaLab username.
○ Description of the files you have submitted.
○ References to the third-party libraries you are using in your solution
(leave blank if you are not using any of them).
○ Any details you want the person who tests your solution to know when
they test your solution, e.g., which script to run, so that we can check
your results, if necessary.
Tips
1. For this project, you can use the Real-ESRGAN [1] codebase, which is based
on BasicSR toolbox that implements many popular image restoration
methods with modular design and provides detailed documentation.
2. We included a sample Real-ESRGAN configuration file (a simple network, i.e.,
SRResNet [4]) as an example in the shared folder. [Important] You need to:
a. Put “train_SRResNet_x4_FFHQ_300k.yml” under the “options” folder.
b. Put “ffhqsub_dataset.py” under the “realesrgan/data” folder.
The PSNR of this baseline on the validation set is around 26.33 dB.
3. For the calculation of PSNR, you can refer to ‘evaluate.py’ in the shared folder.
You should replace the corresponding path ‘xxx’ with your own path.
4. The training data is important in this task. If you do not plan to use MMEditing
for this project, please make sure your pipeline to generate the LQ data is
identical to the one in the configuration file.
5. The training configuration of GAN models is also available in Real-ESRGAN
and BasicSR. You can freely explore the repository.
6. The following techniques may help you to boost the performance:
a. Data augmentation, e.g. random horizontal flip (but do not use vertical
flip, otherwise, it will break the alignment of the face images)
b. More powerful models and backbones (within the complexity
constraint), please refer to some works in reference.
c. Hyper-parameters fine-tuning, e.g., choice of the optimizer, learning
rate, number of iterations
d. Discriminative GAN loss will help generate more natural results (but it
lowers PSNR, please find a trade-off by adjusting loss weights).
e. Think about what is unique to this dataset and propose novel modules.
References
[1] Wang et al., Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
Synthetic Data, ICCVW 2021
[2] Wang et al., GFP-GAN: Towards Real-World Blind Face Restoration with Generative
Facial Prior, CVPR 2021
[3] Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer,
NeurIPS 2022
[4] C. Ledig et al., Photo-realistic Single Image Super-Resolution using a Generative
Adversarial Network, CVPR 2017
[5] Wang et al., A General U-Shaped Transformer for Image Restoration, CVPR 2022
[6] Zamir et al., Restormer: Efficient Transformer for High-Resolution Image Restoration,
CVPR 2022
Appendix A Hands-on Instructions for Submission on CodaLab
After your participation to the competition is approved, you can submit your results
here:
Then upload the zip file containing your results.
If the ‘STATUS’ turns to ‘Finished’, it means that you have successfully uploaded
your result. Please note that this may take a few minutes.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做IDEPG001、代寫c/c++,Java編程設計
  • 下一篇:CSI 2120代做、代寫Python/Java設計編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        欧美日韩中文字幕一区二区| 欧美日本国产一区| 91久久精品一区二区| 欧美精品久久天天躁| 久久久久97国产精华液好用吗| 中文字幕一区二| 日韩一区精品字幕| 成人精品一区二区三区中文字幕| 91久久精品国产91性色tv| 久久久蜜臀国产一区二区| 性感美女极品91精品| 国产91对白在线观看九色| 欧美日韩一区二区不卡| 国产精品久久久久久久久图文区 | 精品成人一区二区三区| 亚洲超碰精品一区二区| 不卡视频一二三四| 久久欧美中文字幕| 免费看日韩a级影片| 欧美性大战久久| 国产精品久久久久久户外露出| 精一区二区三区| 在线电影院国产精品| 一区二区三区在线观看欧美| 成人晚上爱看视频| 国产午夜亚洲精品不卡| 久久精品国产精品亚洲红杏| 这里只有精品免费| 午夜精品一区二区三区免费视频 | 成人av午夜电影| 国产三级精品在线| 免费在线欧美视频| 久久久久久电影| 精品一区二区三区免费视频| 欧美日产国产精品| 天天影视涩香欲综合网 | 国产91精品久久久久久久网曝门| 欧美一区二区三区免费大片| 亚洲一二三区不卡| 欧美午夜精品久久久| 亚洲一区二区四区蜜桃| 欧美色电影在线| 亚洲综合色婷婷| 欧美日韩一区二区三区免费看| 玉足女爽爽91| 欧美日韩国产乱码电影| 日韩在线a电影| 精品国产伦一区二区三区免费| 韩国女主播成人在线观看| 久久一区二区三区四区| 成人亚洲一区二区一| 亚洲欧美在线aaa| 欧美在线免费播放| 午夜精品成人在线| 精品国产伦一区二区三区免费| 国产精品中文字幕欧美| 国产精品天天摸av网| 91视频com| 免费一级片91| 欧美国产激情一区二区三区蜜月 | 成人深夜在线观看| 夜夜夜精品看看| 日韩精品一区二区三区中文精品| 国产一区二区三区高清播放| 中文字幕一区免费在线观看| 在线这里只有精品| 免费在线看一区| 1024精品合集| 5月丁香婷婷综合| 成人午夜视频在线观看| 亚洲国产精品久久一线不卡| 日韩精品一区二区三区视频在线观看| 久88久久88久久久| 中文字幕日本乱码精品影院| 7777精品伊人久久久大香线蕉完整版| 激情丁香综合五月| 又紧又大又爽精品一区二区| 欧美tickle裸体挠脚心vk| 丰满少妇久久久久久久| 亚洲小说欧美激情另类| 精品国产麻豆免费人成网站| 色综合激情五月| 国产毛片精品视频| 日韩在线一二三区| 日韩一区日韩二区| 欧美精品一区二区三| 色哟哟一区二区在线观看| 久久国产欧美日韩精品| 亚洲综合色丁香婷婷六月图片| 精品成人免费观看| 在线不卡一区二区| 色综合视频一区二区三区高清| 韩国午夜理伦三级不卡影院| 日韩主播视频在线| 亚洲欧美激情一区二区| 久久精品视频在线看| 日韩一本二本av| 欧美精品国产精品| 在线观看免费一区| av高清不卡在线| 成人97人人超碰人人99| 丰满亚洲少妇av| 国产精品综合av一区二区国产馆| 日韩成人免费看| 日日嗨av一区二区三区四区| 一区二区三区免费在线观看| 中文字幕在线不卡| 中文字幕五月欧美| 国产精品短视频| 国产精品美女一区二区| 国产日韩精品一区二区三区在线| 日韩精品一区二区三区在线播放 | 欧美精品免费视频| 欧美熟乱第一页| 欧美最猛性xxxxx直播| 色先锋久久av资源部| 91小视频在线免费看| 波多野结衣亚洲一区| 91在线看国产| 一本色道久久综合亚洲91| 91蜜桃在线观看| 日本大香伊一区二区三区| 色欧美乱欧美15图片| 欧日韩精品视频| 欧美电影在线免费观看| 日韩欧美卡一卡二| 国产亚洲欧洲997久久综合| 国产精品免费久久久久| 亚洲欧美日韩国产手机在线 | 亚洲欧洲性图库| 亚洲人成小说网站色在线| 亚洲综合激情小说| 日韩不卡手机在线v区| 久久成人久久爱| 成人的网站免费观看| 色先锋aa成人| 9191精品国产综合久久久久久 | 久久成人免费网| 国产91丝袜在线观看| 91麻豆精品一区二区三区| 欧美人妇做爰xxxⅹ性高电影| 日韩午夜中文字幕| 久久婷婷国产综合国色天香| 国产精品精品国产色婷婷| 一区二区三区中文在线| 日韩精品乱码免费| 国产成人在线观看| 欧美午夜片在线观看| 久久综合丝袜日本网| 亚洲乱码一区二区三区在线观看| 亚洲第一激情av| 国产丶欧美丶日本不卡视频| 在线精品视频一区二区| 久久综合九色综合97婷婷女人| 亚洲欧美日韩国产手机在线| 蜜臀av性久久久久蜜臀aⅴ四虎| 国产v综合v亚洲欧| 亚洲色图在线播放| 亚洲一区视频在线| 轻轻草成人在线| 91久久精品一区二区| 99国产精品国产精品久久| 欧美三级视频在线观看| 精品人在线二区三区| 亚洲视频一区二区在线| 99久久99久久精品国产片果冻| 国产精品亚洲综合一区在线观看| 国产美女精品人人做人人爽| 精品女同一区二区| www.久久久久久久久| 欧美伦理视频网站| 中文字幕日韩一区二区| 男女性色大片免费观看一区二区 | 亚洲一区中文日韩| 国产传媒日韩欧美成人| 欧美二区乱c少妇| 亚洲久草在线视频| 粗大黑人巨茎大战欧美成人| 日韩三级精品电影久久久 | 亚洲柠檬福利资源导航| 国产99一区视频免费| 欧美一级夜夜爽| 亚洲电影第三页| 91福利视频久久久久| 国产精品久久久久久久午夜片 | 免费在线观看视频一区| 欧美日韩国产123区| 一区二区三区在线视频免费| 成人av综合在线| 国产欧美一区二区精品性| 精品亚洲欧美一区| 日韩欧美电影在线| 蜜臀va亚洲va欧美va天堂| 欧美日韩高清一区| 午夜视频一区在线观看| 欧美福利视频导航| 美女精品一区二区| 日韩一级片网址| 国内精品伊人久久久久av影院 | a4yy欧美一区二区三区|