日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

CISC3025代寫、代做c++,Java程序設(shè)計(jì)

時(shí)間:2024-04-03  來源:  作者: 我要糾錯(cuò)



University of Macau
CISC3025 - Natural Language Processing
Project#3, 2023/2024
(Due date: 18th April)
Person Name ('Named Entity') Recognition
This is a group project with two students at most. You need to enroll in a group here. In this project,
you will be building a maximum entropy model (MEM) for identifying person names in newswire
texts (Label=PERSON or Label=O). We have provided all of the machinery for training and testing
your MEM, but we have left the feature set woefully inadequate. Your job is to modify the code
for generating features so that it produces a much more sensible, complete, and higher-performing
set of features.
NOTE: In this project, we expect you to design a web application for demonstrating your final
model. You need to design a web page that provides at least such a simple function: 1) User inputs
sentence; 2) Output the named entity recognition results. Of course, more functionalities in your
web application are highly encouraged. For example, you can integrate the previous project’s work,
i.e., text classification, into your project (It would be very cool!).
You NEED to submit:
• Runnable program
o You need to implement a Named Entity Recognition model based on the given starter
codes
• Model file
o Once you have finished the designing of your features and made it functions well, it
will dump a model file (‘model.pkl’) automatically. We will use it to evaluate
your model.
• Web application
o You also need to develop a web application (freestyle, no restriction on programming
languages) to demonstrate your NER model or even more NLP functions.
o Obviously, you need to learn how to call your python project when building the web
application.
• Report
o You should finish a report to introduce your work on this project. Your report should
contain the following content:
§ Introduction;
§ Description of the methods, implementation, and additional consideration to
optimize your model;
§ Evaluations and discussions about your findings;
2
§ Conclusion and future work suggestions.
• Presentation
o You need to give a 8-minute presentation in the class to introduce your work followed
by a 3-minute Q&A section. The content of the presentation may refer to the report.
Starter Code
In the starter code, we have provided you with three simple starter features, but you should be able
to improve substantially on them. We recommend experimenting with orthographic information,
gazetteers, and the surrounding words, and we also encourage you to think beyond these
suggestions.
The file you will be modifying is MEM.py
Adding Features to the Code
You will create the features for the word at the given position, with the given previous label. You
may condition on any word in the sequence (and its relative position), not just the current word
because they are all observed. You may not condition on any labels other than the previous one.
You need to give a unique name for each feature. The system will use this unique name in training
to set the weight for that feature. At the testing time, the system will use the name of this feature
and its weight to make a classification decision.
Types of features to include
Your features should not just be the words themselves. The features can represent any property of
the word, context, or additional knowledge.
For example, the case of a word is a good predictor for a person's name, so you might want to add
a feature to capture whether a given word was lowercase, Titlecase, CamelCase, ALLCAP, etc.
def features(self, words, previous_label, position):
 features = {}
 """ Baseline Features """
 current_word = words[position]
 features['has_(%s)' % current_word] = 1
 features['prev_label'] = previous_label
 if current_word[0].isupper():
 features['Titlecase'] = 1
 #===== TODO: Add your features here =======#
 #...
 #=============== TODO: Done ================#
 return features
3
Imagine you saw the word “Jenny”. In addition to the feature for the word itself (as above), you
could add a feature to indicate it was in Title case, like:
You might encounter an unknown word in the test set, but if you know it begins with a capital letter
then this might be evidence that helps with the correct prediction.
Choosing the correct features is an important part of natural language processing. It is as much art
as science: some trial and error is inevitable, but you should see your accuracy increasing as you
add new types of features.
The name of a feature is not different from an ID number. You can use assign any name for a
feature as long as it is unique. For example, you can use “case=Title” instead of “Titlecase”.
Running the Program
We have provided you with a training set and a development set. We will be running your programs
on an unseen test set, so you should try to make your features as general as possible. Your goal
should be to increase F1 on the dev set, which is the harmonic mean of the precision and the recall.
You can use three different command flags (‘-t’, ‘-d’, ‘-s’) to train, test, and show respectively.
These flags can be used independently or jointly. If you run the program as it is, you should see the
following training process:
Afterward, it can print out your score on the dev set.
You can also give it an additional flag, -s, and have it show verbose sample results. The first column
is the word, the last two columns are your program's prediction of the word’s probability to be
$ python run.py -d
Testing classifier...
f_score = 0.8715
accuracy = 0.9641
recall = 0.7143
precision = 0.9642
if current_word[0].isupper():
features['Titlecase'] = 1
$ cd NER
$ python run.py -t
Training classifier...
 ==> Training (5 iterations)
 Iteration Log-Likelihood Accuracy
 ---------------------------------------
 1 -0.69315 0.055
 2 -0.09383 0.946
 3 -0.08134 0.968
 4 -0.07136 0.969
 Final -0.06330 0.969
4
PERSON or O. The star ‘*’ indicates the gold result. This should help you do error analysis and
properly target your features.
Where to make your changes?
1. Function ‘features()’ in MEM.py
2. You can modify the “Customization” part in run.py in order to debug more efficiently and
properly. It should be noted that your final submitted model should be trained under at least 20
iterations.
3. You may need to add a function “predict_sentence( )” in class MEM( ) to output predictions
and integrate with your web applications.
Changes beyond these, if you choose to make any, should be done with caution.
Grading
The assignment will be graded based on your codes, reports, and most importantly final
presentation.
$ python run.py -s
 Words P(PERSON) P(O)
----------------------------------------
 EU 0.0544 *0.9456
 rejects 0.0286 *0.9714
 German 0.0544 *0.9456
 call 0.0286 *0.9714
 to 0.0284 *0.9716
 boycott 0.0286 *0.9714
 British 0.0544 *0.9456
 lamb 0.0286 *0.9714
 . 0.0281 *0.9719
 Peter *0.4059 0.5941
 Blackburn *0.5057 0.4943
 BRUSSELS 0.4977 *0.5023
 1996-08-22 0.0286 *0.9714
 The 0.0544 *0.9456
 European 0.0544 *0.9456
 Commission 0.0544 *0.9456
 said 0.0258 *0.9742
 on 0.0283 *0.9717
 Thursday 0.0544 *0.9456
 it 0.0286 *0.9714
#====== Customization ======
BETA = 0.5
MAX_ITER = 5 # max training iteration
BOUND = (0, 20) # the desired position bound of samples
#==========================
5
Tips
• Start early! This project may take longer than the previous assignments if you are aiming for
the perfect score.
• Generalize your features. For example, if you're adding the above "case=Title" feature, think
about whether there is any pattern that is not captured by the feature. Would the "case=Title"
feature capture "O'Gorman"?
• When you add a new feature, think about whether it would have a positive or negative weight
for PERSON and O tags (these are the only tags for this assignment).

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






















 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:COMP3334代做、代寫Python程序語言
  • 下一篇:代寫CSC 330、代做C/C++編程語言
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        经典一区二区三区| 美女诱惑一区二区| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 9色porny自拍视频一区二区| 韩国视频一区二区| 国产精品综合二区| 黑人巨大精品欧美一区| 亚洲二区在线观看| 一卡二卡三卡日韩欧美| 一区二区三区电影在线播| 亚洲精品国产a| 亚洲成人综合视频| 免费观看30秒视频久久| 日韩av成人高清| 久久国产人妖系列| 国产一区二区中文字幕| 国产福利精品一区| 91免费版在线看| 欧美美女一区二区| 日韩欧美中文字幕一区| 欧美精品一区二区在线播放| 国产亚洲精品久| 亚洲欧美日韩电影| 亚洲一二三区在线观看| 视频在线观看一区| 福利视频网站一区二区三区| 91一区二区三区在线播放| 在线观看中文字幕不卡| 6080国产精品一区二区| 2023国产精品| 亚洲综合免费观看高清在线观看| 热久久国产精品| 成人久久视频在线观看| 精品视频1区2区| 久久久午夜精品| 一区二区三区小说| 久久国产精品一区二区| 色拍拍在线精品视频8848| 欧美妇女性影城| 成人欧美一区二区三区黑人麻豆| 丝袜美腿高跟呻吟高潮一区| 国产米奇在线777精品观看| 在线观看日韩av先锋影音电影院| 日韩一区二区三区三四区视频在线观看 | 亚洲欧美日韩中文字幕一区二区三区| 亚洲国产成人精品视频| 国产美女主播视频一区| 欧美在线免费播放| 久久久久久久久久看片| 亚洲成a人片在线观看中文| 国产在线不卡一卡二卡三卡四卡| 色综合中文字幕国产 | 精品日韩在线观看| 亚洲一区二区黄色| 国产一区二区三区香蕉| 欧美日韩激情一区二区三区| 国产欧美日产一区| 男人的天堂久久精品| 92精品国产成人观看免费| 精品88久久久久88久久久| 亚洲影院在线观看| fc2成人免费人成在线观看播放| 日韩欧美在线1卡| 午夜欧美在线一二页| 99久久婷婷国产| 国产女人水真多18毛片18精品视频| 日本亚洲天堂网| 欧美影片第一页| 亚洲黄色录像片| 成人免费毛片高清视频| 国产欧美日韩另类视频免费观看| 国内精品国产成人国产三级粉色| 欧美一区二区大片| 免费成人在线播放| 日韩视频免费观看高清在线视频| 天堂在线一区二区| 欧美久久高跟鞋激| 视频一区二区欧美| 91精品国产高清一区二区三区蜜臀| 亚洲一区二区高清| 欧美日韩一级二级三级| 亚洲一区视频在线| 精品婷婷伊人一区三区三| 亚洲第一狼人社区| 在线不卡一区二区| 麻豆国产精品一区二区三区 | 色悠久久久久综合欧美99| 亚洲日穴在线视频| 色狠狠综合天天综合综合| 亚洲免费观看高清完整版在线 | 欧美亚洲国产一区二区三区va| 亚洲乱码精品一二三四区日韩在线| 99精品欧美一区| 亚洲精品你懂的| 欧美人xxxx| 国内精品自线一区二区三区视频| 久久综合成人精品亚洲另类欧美| 国产一区二区久久| 国产精品久久国产精麻豆99网站| 97se亚洲国产综合自在线| 亚洲欧美aⅴ...| 欧美嫩在线观看| 国产福利一区二区三区视频| 亚洲欧洲精品一区二区精品久久久 | 色伊人久久综合中文字幕| 一区av在线播放| 日韩欧美一区中文| 国产99久久久国产精品| 亚洲老妇xxxxxx| 91精品国产日韩91久久久久久| 国产一区二区不卡老阿姨| 亚洲欧美综合网| 91精品国产高清一区二区三区蜜臀 | 国产成人精品影视| 亚洲人成7777| 欧美成人精精品一区二区频| 丰满放荡岳乱妇91ww| 日韩不卡一区二区三区| 久久综合视频网| 欧美日韩精品一区二区三区四区| 国产又粗又猛又爽又黄91精品| 亚洲欧洲性图库| 久久一区二区视频| 91麻豆精品一区二区三区| 日本伊人精品一区二区三区观看方式| 国产免费观看久久| 精品美女一区二区| 欧美亚洲日本国产| av在线不卡网| 国产精品一区二区在线播放| 亚洲一区二区高清| 亚洲人亚洲人成电影网站色| 欧美一区二区三区在线观看视频| 91热门视频在线观看| 国产成人精品午夜视频免费| 午夜一区二区三区视频| 国产精品嫩草99a| 69堂精品视频| 欧洲生活片亚洲生活在线观看| 国产精品亚洲一区二区三区在线 | 久久丁香综合五月国产三级网站| 夜夜嗨av一区二区三区网页| 久久久精品人体av艺术| 精品国产99国产精品| 制服丝袜亚洲色图| 欧美美女一区二区在线观看| 成人18视频日本| 国产在线不卡一卡二卡三卡四卡| 日韩电影在线观看网站| 男男成人高潮片免费网站| 天堂影院一区二区| 日本亚洲欧美天堂免费| 蜜臀va亚洲va欧美va天堂| 麻豆精品视频在线| 韩国在线一区二区| 国产最新精品免费| 激情图片小说一区| 国产a区久久久| 丁香六月久久综合狠狠色| 国产米奇在线777精品观看| 经典三级在线一区| 国产99精品国产| 国产一区二区按摩在线观看| 国产91丝袜在线观看| 成人免费黄色大片| 成人中文字幕合集| 99久久国产综合精品色伊| 91麻豆123| 在线成人av网站| 欧美一级日韩一级| 国产三级精品三级在线专区| 国产日产欧美一区| 一区二区三区日韩精品| 日产国产欧美视频一区精品 | 亚洲精品视频在线看| 亚洲福中文字幕伊人影院| 看国产成人h片视频| 国产精品1区二区.| 色综合中文字幕国产| 欧美午夜不卡在线观看免费| 欧美一级二级三级蜜桃| 欧美精品一区二区三区蜜桃视频 | 亚洲综合色噜噜狠狠| 精品一区免费av| 99国产精品一区| 欧美久久久久中文字幕| 日本一区二区三区在线观看| 亚洲男人天堂av网| 精品综合久久久久久8888| 99精品国产一区二区三区不卡| 欧美日韩电影在线播放| 亚洲精品一区二区在线观看| 亚洲人123区| 国产伦理精品不卡| 欧美三级电影网站| 最新高清无码专区| 亚洲二区在线观看| av亚洲精华国产精华| 91精品国产综合久久精品图片| 国产欧美日韩久久|