日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

JC3509編程代做、代寫Python程序設計

時間:2024-03-31  來源:  作者: 我要糾錯



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:CHC5223代寫、Java/c++編程設計代做
  • 下一篇:代寫CSci 4061、c/c++,Java程序代做
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        欧美巨大另类极品videosbest | 欧美日韩国产高清一区二区三区 | 美日韩一级片在线观看| 国产精品伊人色| 欧美性大战久久久久久久 | 国产精品99久久久久久宅男| 色综合色狠狠综合色| 夜夜嗨av一区二区三区网页| 久久99国内精品| 91论坛在线播放| 2欧美一区二区三区在线观看视频| 亚洲欧洲无码一区二区三区| 精品在线一区二区| 欧美在线999| 国产精品午夜在线| 美国三级日本三级久久99| 91行情网站电视在线观看高清版| 亚洲精品一区二区三区蜜桃下载| 亚洲三级小视频| 成人一道本在线| 久久精品夜色噜噜亚洲a∨| 免费人成黄页网站在线一区二区| 色8久久精品久久久久久蜜| 国产精品素人一区二区| 美女网站色91| 欧美一区二区三区播放老司机| 亚洲三级视频在线观看| 成人国产精品免费网站| 欧美高清一级片在线观看| 国内精品视频666| 精品国产一区二区三区久久影院 | 欧美日韩欧美一区二区| 亚洲免费色视频| 色综合 综合色| 中文字幕一区不卡| 97精品久久久午夜一区二区三区| 欧美激情一区在线观看| 国产精品羞羞答答xxdd| 国产欧美一区二区精品性色超碰 | 另类欧美日韩国产在线| 6080日韩午夜伦伦午夜伦| 亚洲成av人片在线观看无码| 欧美伊人久久久久久久久影院| 亚洲欧美一区二区三区久本道91| 91视频www| 亚洲综合一二区| 美女国产一区二区三区| 制服丝袜一区二区三区| 日韩av在线免费观看不卡| 91精品国产综合久久精品性色 | 成人中文字幕合集| 亚洲免费观看高清完整版在线观看| 91亚洲精品久久久蜜桃网站| 亚洲欧美日韩一区| 欧美日韩三级在线| 精品在线观看免费| 国产午夜精品在线观看| 本田岬高潮一区二区三区| 亚洲欧美国产高清| 欧美日韩成人激情| 激情成人综合网| 综合久久久久久| 欧美日韩五月天| 黄页网站大全一区二区| 中文字幕中文乱码欧美一区二区| 欧美无乱码久久久免费午夜一区| 日韩国产精品久久久久久亚洲| 久久夜色精品国产噜噜av| 91在线一区二区三区| 日韩电影在线一区| 一区二区中文视频| 91精品久久久久久久91蜜桃| 久久国产精品第一页| 午夜一区二区三区在线观看| 欧美一区二区不卡视频| 成人精品小蝌蚪| 天天操天天干天天综合网| 久久女同精品一区二区| 在线欧美日韩精品| 精品亚洲免费视频| 亚洲综合色噜噜狠狠| 精品久久人人做人人爰| 欧洲精品一区二区三区在线观看| 精久久久久久久久久久| 亚洲人成网站在线| 久久久久久久久久久电影| 欧美二区在线观看| 色综合久久久久网| 国产精品一区二区三区网站| 五月婷婷综合网| 国产欧美日韩综合| 日韩精品自拍偷拍| 欧美主播一区二区三区| 豆国产96在线|亚洲| 麻豆精品在线播放| 天天免费综合色| 亚洲黄网站在线观看| 国产亚洲福利社区一区| 欧美日韩一区二区三区四区| 99久久久精品| 国产91精品一区二区麻豆网站 | 成人三级伦理片| 国产精品99久久久久久有的能看| 亚洲国产精品一区二区久久| 中文字幕人成不卡一区| 国产三区在线成人av| 欧美成人激情免费网| 欧美一级欧美三级在线观看| 欧美无砖砖区免费| 欧美中文字幕不卡| 色av成人天堂桃色av| 粉嫩av亚洲一区二区图片| 国产精品一二三四| 国产一区二区三区精品欧美日韩一区二区三区 | 一区二区三区不卡视频在线观看 | 欧美在线看片a免费观看| 9色porny自拍视频一区二区| 国产精品白丝jk黑袜喷水| 精品综合免费视频观看| 久久电影网电视剧免费观看| 麻豆一区二区99久久久久| 蜜臀av亚洲一区中文字幕| 免费高清在线视频一区·| 天天操天天色综合| 男人的天堂久久精品| 美美哒免费高清在线观看视频一区二区 | 国产精品久久久久天堂| 亚洲天堂av老司机| 亚洲欧美精品午睡沙发| 亚洲综合男人的天堂| 亚洲福利电影网| 蜜臀av性久久久久蜜臀aⅴ四虎| 久久www免费人成看片高清| 麻豆91小视频| 国产精品羞羞答答xxdd| 99久久免费精品高清特色大片| 91美女在线观看| 精品视频123区在线观看| 在线综合+亚洲+欧美中文字幕| 日韩欧美一区二区视频| 久久久久国产免费免费| 亚洲美女免费视频| 丝瓜av网站精品一区二区| 激情深爱一区二区| 成人精品gif动图一区| 91国在线观看| 精品日韩在线观看| 136国产福利精品导航| 夜夜揉揉日日人人青青一国产精品| 日韩国产精品久久久| 国产精品亚洲专一区二区三区 | 亚洲图片欧美视频| 国产一区二区三区四区在线观看| 99久久久精品| 精品奇米国产一区二区三区| 一区免费观看视频| 久久精品国产免费看久久精品| 白白色 亚洲乱淫| 欧美肥妇free| 亚洲精品一二三| 韩国成人福利片在线播放| 色综合久久天天综合网| 欧美一区二区日韩一区二区| 亚洲同性gay激情无套| 麻豆视频一区二区| 欧美亚洲综合色| 国产精品污网站| 久久精品免费观看| 欧美日韩视频在线第一区 | 91精品国产aⅴ一区二区| 国产精品天美传媒| 韩国av一区二区三区在线观看| 色偷偷成人一区二区三区91| 久久久久久一二三区| 午夜成人在线视频| 色综合一个色综合| 久久久久国产免费免费| 麻豆91免费观看| 7777女厕盗摄久久久| 依依成人精品视频| 99视频一区二区| 国产欧美va欧美不卡在线| 久久99精品国产麻豆婷婷洗澡| 欧美三级视频在线| 亚洲乱码国产乱码精品精98午夜| 国产精品影视在线| 欧美大胆人体bbbb| 日韩影院免费视频| 777xxx欧美| 日韩电影一区二区三区四区| 欧美专区日韩专区| 亚洲精品免费播放| 色94色欧美sute亚洲线路二| 亚洲人被黑人高潮完整版| 99精品国产一区二区三区不卡| 中文字幕精品综合| 国产高清精品久久久久| 久久久久国产精品免费免费搜索| 国产一区二区视频在线播放| 欧美xxxxxxxxx|