日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區(qū)
    昆明西山國家級風景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        亚洲图片有声小说| 亚洲午夜成aⅴ人片| 91.xcao| 欧美色手机在线观看| 粉嫩嫩av羞羞动漫久久久 | 777午夜精品视频在线播放| 91蜜桃网址入口| 成人理论电影网| 成人app软件下载大全免费| 粉嫩av一区二区三区粉嫩 | 国产欧美精品一区二区色综合| 337p亚洲精品色噜噜| 91麻豆精品国产91久久久| 3d成人h动漫网站入口| 欧美日韩1234| 欧美xxxxxxxx| 久久综合九色综合久久久精品综合| 日韩欧美亚洲国产精品字幕久久久| 欧美一区在线视频| 国产日韩欧美制服另类| 亚洲日本中文字幕区| 亚洲激情网站免费观看| 丝袜亚洲另类欧美| 捆绑调教美女网站视频一区| 国产精品66部| 91女人视频在线观看| 欧美三级资源在线| 欧美电影免费观看高清完整版| 国产欧美一区二区精品婷婷| 亚洲欧美日韩一区二区| 日韩激情av在线| 成人黄色国产精品网站大全在线免费观看 | 国产欧美精品一区| 艳妇臀荡乳欲伦亚洲一区| 美女免费视频一区二区| 福利91精品一区二区三区| 色8久久人人97超碰香蕉987| 日韩欧美电影一二三| 国产精品久久久久久久久免费桃花| 一区二区在线观看av| 秋霞电影网一区二区| 97aⅴ精品视频一二三区| 欧美丰满嫩嫩电影| 亚洲国产经典视频| 日韩国产欧美一区二区三区| 国产剧情一区在线| 欧美日韩精品福利| 欧美国产乱子伦 | 中文欧美字幕免费| 日韩黄色在线观看| 亚洲成人一二三| 欧美日产在线观看| 午夜不卡av免费| 中文字幕中文字幕一区二区| 亚洲一区影音先锋| 91一区二区在线观看| 一区二区高清视频在线观看| 欧美精三区欧美精三区| 视频一区二区三区在线| 日韩午夜在线影院| 国产成人午夜视频| 欧美国产欧美综合| 色婷婷精品久久二区二区蜜臀av| 亚洲美女一区二区三区| 欧美伊人久久久久久久久影院| 视频一区二区三区在线| 久久精品欧美日韩精品| 一本久道中文字幕精品亚洲嫩| 亚洲地区一二三色| 精品久久久久久久久久久久包黑料| 国产a视频精品免费观看| 日韩一区欧美一区| 欧美日韩一区不卡| 国产激情一区二区三区四区| 国产精品久久久久久福利一牛影视| 色婷婷av一区二区三区大白胸| 日韩不卡手机在线v区| 久久精品视频一区二区| 91免费版在线看| 麻豆精品在线看| 日本一区二区成人| 91精品福利在线一区二区三区| 精品一区二区在线视频| 亚洲日本成人在线观看| 日韩欧美在线一区二区三区| 成人a免费在线看| 九九视频精品免费| 亚洲妇熟xx妇色黄| 欧美国产激情二区三区| 日韩一级欧美一级| 色狠狠色狠狠综合| 成人app网站| 国产一区在线视频| 美女视频第一区二区三区免费观看网站| 欧美激情艳妇裸体舞| 精品捆绑美女sm三区| 欧美午夜精品电影| 91浏览器在线视频| 国产福利视频一区二区三区| 美女www一区二区| 五月婷婷另类国产| 洋洋av久久久久久久一区| 国产精品欧美极品| 国产精品日日摸夜夜摸av| 日韩免费性生活视频播放| 欧美精品三级日韩久久| 欧美综合一区二区| 在线看国产一区| 99久久777色| 99精品国产视频| 91香蕉视频mp4| 94色蜜桃网一区二区三区| 成人免费看片app下载| 久久99国产精品免费网站| 蜜桃视频一区二区| 久久精品999| 韩国在线一区二区| 久久不见久久见免费视频1| 蜜臀va亚洲va欧美va天堂| 麻豆成人久久精品二区三区红| 日韩高清在线不卡| 琪琪一区二区三区| 久久国产精品露脸对白| 国产综合一区二区| 国产一本一道久久香蕉| 国产精品亚洲综合一区在线观看| 国产99久久久精品| 一本久久综合亚洲鲁鲁五月天 | av一本久道久久综合久久鬼色| 91亚洲大成网污www| 色偷偷成人一区二区三区91| 在线视频国内自拍亚洲视频| 欧美人成免费网站| 精品国产乱码久久久久久蜜臀| 久久久美女毛片| 亚洲国产精品ⅴa在线观看| 综合久久国产九一剧情麻豆| 一区二区视频在线| 免费观看30秒视频久久| 国模冰冰炮一区二区| 97精品电影院| 欧美亚洲综合色| 欧美精品一区二区三区视频| 国产拍欧美日韩视频二区| 一二三四区精品视频| 青青草国产精品97视觉盛宴| 丰满白嫩尤物一区二区| 欧美性猛交xxxx黑人交| 精品国产一区二区三区久久久蜜月 | 国产成人精品午夜视频免费| 色婷婷精品大在线视频 | 精品在线播放午夜| 91丨九色porny丨蝌蚪| 欧美美女视频在线观看| 精品福利av导航| 亚洲视频免费在线观看| 美女任你摸久久| 91年精品国产| 欧美成人三级电影在线| 亚洲男女一区二区三区| 国产在线国偷精品产拍免费yy | 粉嫩一区二区三区性色av| 欧美另类变人与禽xxxxx| 国产欧美日韩视频在线观看| 午夜精品久久久久久久久久久| 国产精品自拍毛片| 欧美日本一区二区三区| 18涩涩午夜精品.www| 国产综合久久久久久鬼色| 欧美在线影院一区二区| 久久久一区二区| 日韩电影在线观看电影| 91免费视频观看| 国产日韩欧美一区二区三区综合| 亚洲成av人片一区二区| 97久久超碰精品国产| ww久久中文字幕| 丝瓜av网站精品一区二区 | 丁香另类激情小说| 26uuu精品一区二区在线观看| 亚洲午夜一区二区| 99re8在线精品视频免费播放| 久久久久99精品国产片| 蜜臀av性久久久久蜜臀av麻豆| 欧美亚洲丝袜传媒另类| 一区二区三区在线视频播放| 成人一二三区视频| 久久精品这里都是精品| 久久99九九99精品| 欧美一区二区日韩一区二区| 亚洲第一狼人社区| 欧美色窝79yyyycom| 一区二区三区四区不卡在线 | 亚洲欧美影音先锋| 91玉足脚交白嫩脚丫在线播放| 欧美激情在线一区二区| 国产风韵犹存在线视精品| 久久综合色综合88| 国产精品自产自拍| 亚洲国产成人私人影院tom |