日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        亚洲欧洲制服丝袜| 欧美性做爰猛烈叫床潮| 久久影视一区二区| 久久99久久精品欧美| 日韩小视频在线观看专区| 七七婷婷婷婷精品国产| 欧美白人最猛性xxxxx69交| 麻豆国产精品视频| 久久久精品综合| 91麻豆国产香蕉久久精品| 亚洲毛片av在线| 欧美精品1区2区| 国产一区二区在线看| 国产精品久久久久久久久动漫 | 国产精品99久久不卡二区| 久久九九影视网| 91丨porny丨最新| 亚洲成人在线网站| 欧美videossexotv100| 国产成人精品网址| 亚洲精品一二三四区| 3d动漫精品啪啪1区2区免费| 九九精品一区二区| 最新热久久免费视频| 欧美日韩一二三| 国产一区二区美女| 亚洲人精品午夜| 日韩午夜激情电影| 波多野结衣中文字幕一区| 欧美精品自拍偷拍| 亚洲电影中文字幕在线观看| 日韩欧美国产一区在线观看| 99久久久国产精品免费蜜臀| 日日摸夜夜添夜夜添国产精品 | 成人免费在线播放视频| 在线不卡免费欧美| jvid福利写真一区二区三区| 日韩在线一二三区| 亚洲欧洲日产国码二区| 日韩视频国产视频| 日本乱人伦aⅴ精品| 国产黄色成人av| 日韩制服丝袜先锋影音| 亚洲桃色在线一区| 国产午夜久久久久| 欧美精品777| 色偷偷久久人人79超碰人人澡| 久久99精品久久久久久动态图 | 国产成人精品一区二区三区网站观看 | 亚洲福利电影网| 欧美激情一区二区三区蜜桃视频| 欧美性一二三区| av成人免费在线| 国产精品麻豆99久久久久久| 懂色av中文一区二区三区| 日韩国产精品大片| 亚洲午夜在线观看视频在线| 国产精品妹子av| 欧美精品一区二区久久婷婷| 欧美日韩精品三区| 91官网在线观看| 91婷婷韩国欧美一区二区| 国产激情视频一区二区三区欧美| 蜜桃视频一区二区三区在线观看 | 国产欧美日韩不卡| 久久亚洲一区二区三区明星换脸| 欧美欧美欧美欧美首页| 在线这里只有精品| 91国模大尺度私拍在线视频| 99久久国产免费看| 91同城在线观看| 91一区二区在线| 成人av小说网| 成人精品国产一区二区4080| 九九**精品视频免费播放| 亚洲成av人片一区二区梦乃| 亚洲成人免费观看| 午夜日韩在线电影| 亚洲18影院在线观看| 亚洲视频在线一区二区| 国产精品国产三级国产a| 国产精品全国免费观看高清| 国产精品国产三级国产aⅴ原创| 欧美国产乱子伦| 国产精品网曝门| 亚洲色图制服诱惑| 亚洲精品成a人| 日韩一区二区三区在线| 色8久久人人97超碰香蕉987| 91黄色小视频| 在线不卡a资源高清| 欧美成人一区二区三区在线观看| 日韩一级片在线播放| 精品日韩成人av| 久久精品人人做| 中文字幕字幕中文在线中不卡视频| 国产精品夫妻自拍| 亚洲无线码一区二区三区| 午夜精品久久一牛影视| 麻豆一区二区99久久久久| 国产精品1区2区3区在线观看| 国产不卡在线播放| 色先锋资源久久综合| 欧美日韩精品一区二区三区四区| 91精品久久久久久蜜臀| 久久久99免费| 伊人色综合久久天天人手人婷| 一区二区三区国产豹纹内裤在线| 日日夜夜精品免费视频| 韩国成人福利片在线播放| 成人免费观看男女羞羞视频| 欧美视频三区在线播放| 精品国产亚洲在线| 亚洲男同性恋视频| 精品在线一区二区三区| 97se亚洲国产综合在线| 日韩一区二区在线播放| 国产精品视频看| 天天av天天翘天天综合网色鬼国产| 激情五月婷婷综合网| 91国内精品野花午夜精品| 精品国精品自拍自在线| 1区2区3区国产精品| 日产精品久久久久久久性色| 成人a免费在线看| 日韩欧美一区二区在线视频| 国产精品久久久久国产精品日日| 婷婷开心激情综合| 成人av资源在线| 欧美mv日韩mv国产| 一区二区高清在线| 国产91综合一区在线观看| 9191成人精品久久| 亚洲婷婷在线视频| 国产美女精品在线| 欧美久久婷婷综合色| 亚洲欧美一区二区视频| 国产综合久久久久影院| 欧美狂野另类xxxxoooo| 中文字幕欧美一区| 国产一本一道久久香蕉| 欧美一区二区黄| 亚洲第一狼人社区| 色综合咪咪久久| 亚洲国产精品成人综合| 久久爱另类一区二区小说| 欧美亚洲图片小说| 亚洲另类中文字| 97精品久久久午夜一区二区三区| 久久亚洲精华国产精华液| 三级不卡在线观看| 欧美日韩精品免费观看视频| 亚洲精品成a人| 91美女片黄在线| 亚洲日本护士毛茸茸| 成人激情动漫在线观看| 中文字幕乱码一区二区免费| 国产一区二区视频在线播放| 精品国产sm最大网站免费看| 毛片基地黄久久久久久天堂| 欧美一区二区三区的| 奇米一区二区三区av| 欧美男生操女生| 日本特黄久久久高潮| 日韩视频一区二区在线观看| 三级在线观看一区二区| 视频在线观看91| 成人动漫视频在线| 国产精品美女视频| 99riav久久精品riav| 亚洲欧洲日本在线| 色狠狠av一区二区三区| 一区二区三区在线视频免费 | 国产精品一品视频| 国产欧美一区二区精品性色| 高清在线成人网| 日韩理论片在线| 欧洲av一区二区嗯嗯嗯啊| 婷婷开心久久网| 欧美一区日本一区韩国一区| 美女精品一区二区| 久久精品亚洲麻豆av一区二区| 国产高清不卡一区| 亚洲欧美激情在线| 欧美蜜桃一区二区三区| 久久精品国内一区二区三区| 久久伊人蜜桃av一区二区| www.欧美色图| 午夜激情久久久| 久久婷婷一区二区三区| 不卡欧美aaaaa| 亚洲亚洲人成综合网络| 欧美一区二区三区色| 国产成人综合自拍| 一区二区三区在线视频观看| 日韩欧美精品在线视频| 粉嫩一区二区三区性色av| 亚洲最新在线观看| 久久久久久亚洲综合影院红桃| 91在线丨porny丨国产|