日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        亚洲另类第一页| 狠狠人妻久久久久久综合蜜桃 | 中文字幕av免费观看| 午夜激情福利在线| 亚洲福利精品视频| 亚洲一区二区在线视频观看| 亚洲制服中文字幕| 国产草草影院ccyycom| 国产精品探花视频| 久久久久成人网站| 日韩在线播放中文字幕| 亚洲va欧美va| 91国内精品久久久| 国产精品传媒在线观看| 久草视频免费在线| 日本一区二区视频在线播放| 中文字幕国产在线观看| av2014天堂网| 久久精品一卡二卡| 先锋资源在线视频| 97超碰人人模人人人爽人人爱| 国产成人免费观看网站| 久久国产精品免费看| 天堂中文字幕在线观看| 亚洲精品国产精| 国产视频一区二区三区四区五区| 欧美88888| 中文字幕 人妻熟女| 成年人晚上看的视频| 欧美黄色免费在线观看| 中文字幕色网站| 国产午夜手机精彩视频| 天堂中文在线网| 成年人在线免费看片| 欧美国产在线一区| 亚洲天堂av一区二区三区| 国产又粗又猛又色又| 午夜精品福利在线视频| a视频免费在线观看| 欧美一级做a爰片免费视频| 亚洲精品理论片| 精品人妻一区二区三区日产乱码| 无码人妻一区二区三区免费 | 国产精品老熟女一区二区 | 亚洲精品成人无码熟妇在线| 国产专区第一页| 亚洲h视频在线观看| 国产美女福利视频| 无码人妻丰满熟妇区五十路| 国产精品久久久久久无人区| 日韩欧美中文视频| 成人精品在线观看视频| 色婷婷一区二区三区在线观看 | 一级黄色免费毛片| 日本黄区免费视频观看| www.成年人| 无码少妇一区二区| 国产又粗又猛又爽又黄视频| 性猛交娇小69hd| 久久久久精彩视频| 亚洲欧美日韩精品一区| 日本中文字幕在线免费观看 | 日本熟妇人妻中出| 国产精品男女视频| 中文字幕精品无码亚| 男人日女人网站| 超碰97在线资源站| 亚洲av永久无码精品| 久久aaaa片一区二区| 91尤物国产福利在线观看| 日本少妇毛茸茸高潮| 国产毛片aaa| 亚洲综合精品视频| 手机av免费在线观看| 九九热国产精品视频| 亚洲综合一区中| 亚洲av成人无码久久精品| 老牛影视av老牛影视av| 国产aⅴ爽av久久久久| 伊人影院综合网| 欧美日韩精品亚洲精品| 国产午夜精品久久久久久久久| 亚洲天堂男人av| 无码精品黑人一区二区三区| 欧美成人手机视频| 国产一级视频在线观看| 91视频免费入口| 中文字幕av专区| 少妇网站在线观看| 老熟妇一区二区| 精品区在线观看| 国产刺激高潮av| www.97av| 亚洲少妇久久久| 中文字幕人妻色偷偷久久| 日韩一级在线视频| 欧美日韩怡红院 | 国产性xxxx| 国产黄在线免费观看| 999精品在线视频| 亚洲五月激情网| 亚洲精品视频网| 亚洲精品成av人片天堂无码| 怡红院男人天堂| 亚洲18在线看污www麻豆| 日韩欧美一区二区一幕| 人妻人人澡人人添人人爽| 免费看的黄色录像| 老熟妇精品一区二区三区| 精品一区二三区| 好男人在线视频www| 黄色一级片免费的| 国产又粗又硬又长又爽| 狠狠操狠狠干视频| 精品无码人妻一区二区三区| 国产又粗又猛又爽又黄91| 黄色片一区二区| 久久婷婷一区二区| 男人天堂av电影| 少妇精品无码一区二区| 熟妇女人妻丰满少妇中文字幕| 少妇极品熟妇人妻无码| 香蕉av在线播放| 中文字幕日韩综合| 夜夜爽8888| а中文在线天堂| 国产成人啪精品午夜在线观看| 国产第一页第二页| 久久精品国产av一区二区三区 | 在线观看国产精品视频| 亚洲男人第一av| 国产极品久久久| 久久99精品波多结衣一区| 免费视频一二三区| 熟女高潮一区二区三区| 中文字幕第一页在线视频| 一级黄色在线观看| 丰满少妇高潮在线观看| 精品国产鲁一鲁一区二区三区| 久久久久久婷婷| 天堂8在线视频| 亚洲欧美日韩一区二区三区四区| 99精品999| 精品夜夜澡人妻无码av| 日韩中文字幕免费观看| 中文字幕一区二区三区波野结| av大片免费观看| 精品人妻无码一区二区三区| 日韩av片在线| 亚洲天堂国产精品| 国产又黄又粗又猛又爽的视频| 欧美性猛交xxx乱久交| 中文字幕777| 国产麻豆剧传媒精品国产| 人人澡人人澡人人看| 亚洲乱码国产乱码精品| 国产免费一区二区三区四区五区| 人妻av一区二区| 一本一本久久a久久| 精品人妻一区二区三区日产乱码| 三级黄色片网站| 成人午夜福利一区二区| 欧美成人三级视频| 亚洲五月天综合| 蜜桃av噜噜一区二区三区麻豆| 中文在线一区二区三区| 国产欧美一区二区三区在线看蜜臂 | 日韩在线不卡一区| va视频在线观看| 日本黄区免费视频观看| 91久久国产视频| 日本三级一区二区| jizz欧美激情18| 日本乱子伦xxxx| 逼特逼视频在线观看| 日韩欧美三级在线观看| 国产av 一区二区三区| 日韩欧美在线视频播放| 成人精品在线看| 午夜在线观看视频18| 国产又粗又大又爽视频| 中文字幕在线视频一区二区| 精品日韩久久久| 亚洲色图狠狠干| 欧美福利视频一区二区| 99久久精品国产色欲| 日韩免费高清一区二区| 国产精品久久久视频| 中文在线观看av| 漂亮人妻被黑人久久精品| www.激情五月| 一区二区三区福利视频| 久草视频在线观| 丁香激情五月少妇| 午夜一区二区视频| 美女被艹视频网站| 国产成人精品片| 亚洲日本香蕉视频| 色网站在线播放| 免费看黄色av|